
Workshop: Introduction to Stata
Amy L. Johnson & Rebecca Gleit

SELF-DIRECTED STATA LEARNING

Step 1. Getting started 2
 ▢ Activity 1. 4

Step 2. Looking at your data 4
 ▢ Activity 2. 6

Step 3. Summarizing variables 6
 ▢ Activity 3. 8

Step 4. Manipulating your data 9
 ▢ Activity 4. 12

Step 5. Using other helpful functions (OPTIONAL) 13
 ▢ Activity 5. 16

2

SELF-DIRECTED STATA LEARNING

This packet will introduce you to using Stata for basic data manipulation and analysis. Like most
other statistical software, Stata uses “functions” to do things. Functions are things that Stata
“knows” how to do. Each function requires an input and gives you an output. When you’re coding,
you’re calling on these functions to accomplish your goals with the data. We will present many
different functions below. In the .do files (see explanation below), example code (see below), and
this document, functions are in blue. When we introduce important functions, we will write them as
a diagram with this format:

Step 1. Getting started
A .do file is where you will enter code, execute commands, and make notes about your data
analysis process. .do files should contain every line of the code you need to conduct a data
analysis. You will save your .do file so that you can re-run your commands, edit them, use them as
a template for future work etc. When you open a .do file it appears as a window in Stata.

Using .do files ensures that you remember what you did during analysis and that your analysis is
replicable. Like an academic paper, .do files should have a heading that includes the title of your
.do file, your name, the date you last updated the .do file, and a short description of what the .do
file does.

Note: .do files are color coded. As we mentioned above, functions are in blue. Green text indicates
notes, also called “comments,” which Stata will ignore. You can write notes on one line by starting
the line with // or *. You can also write notes on multiple lines by using /* [text here] */. See example
above and other examples throughout this document.

Your .do file should live in your “working directory.” A working directory is a folder on your
computer that contains everything you need for analysis, including .do file(s), log files, and data.
You should save your .do file in this folder. You will also need to set your working directory within
your .do file by using the command cd (which stands for “change directory”) so that your computer
knows where to find relevant files.

FUNCTION
NAME

Information included
in input code.

Information included
in the output.

cd File path
Sets the working directory
to that file path

3

The working directory file path will be unique for every person. For example, if my working
directory is a folder called “Stata Workshop” that lives on my desktop, my file path would be:

/Users/user/Desktop/Stata Workshop (for a Mac)
C:/Users/user/Desktop/Stata Workshop (for a PC)

It will look like this:

(Note: To get the file path for a folder on a Mac, right-click on the folder, press Option, and
click on “Copy ‘Folder’ as Pathname.” To get the file path on a PC, click on the “Home” tab
and then on the icon that says “copy path.”)

Your working directory should also contain the data you will be analyzing. After setting the working
directory in your .do file, you should open your data using your .do file. Data files designed for Stata
are saved as “.dta” files. Stata can also open other types of data files, including .csv files.

Finally, your working directory will also contain what’s called a log file. Log files keep a record of
everything you do in Stata, including both the commands you type in the .do file and the output of
those commands.

At the end of your .do file, you will have to make sure to close your log file.

Now your .do file is set up. The main part of the .do file will be divided into two sections, one for
data cleaning and another for analysis. Data cleaning involves looking at and organizing the data,
including creating variables. Analysis is everything else. This worksheet focuses mostly on the data
cleaning section of the .do file.

Note: Once you have commands written in your .do file, you can run them in one of two ways: (1)
press the “Do” button in the top right corner or (2) use keyboard shortcuts

Cmd-Shift-D (for a Mac)
Ctrl-D (for a PC)

If you have certain lines of code highlighted, then these methods will only run those selected lines.
If nothing is highlighted, the entire .do file will run from start to end.

4

Step 2. Looking at your data
Once the data are open in Stata, we can see the number of observations contained in our data as
well as the number of variables in the box called “Properties” (bottom right corner of the main Stata
window). Here I am using a dataset called “Friends.dta,” which is a smaller version of the dataset
you will be using.

In the box called “Variables” (top right of the main Stata window), we can see all the variables in our
dataset, along with the variable labels.

ACTIVITY 1:
1. Download the sample .do file we created at http://bit.ly/Do_Template.
2. Save the .do file in a specific folder somewhere on your computer that you will

use as a working directory.
3. Fill out the heading of the .do file.
4. Link to your working directory in the .do file.
5. Start a log file from the .do file.
6. Download our class dataset at http://bit.ly/Workshop_Data.
7. Save the dataset in your working directory.
8. Link to your dataset in the .do file and open the data.

5

At the bottom of the main Stata window is the command box. Here you can type Stata commands.
We recommend using a .do file for your code, but sometimes the command box is helpful if you
want to run something quickly that doesn’t need to be reproducible. Directly under the command
box is the file path for your working directory. Check to be sure the file path is set to the correct
working directory.

To look at the data, click on “Data Browser” in the toolbar at the top of the main Stata window.
Each column represents a variable, with a variable name, and each row represents an observation
(or, in this case, a person).

You can also browse the data by typing browse in the command line and hitting Enter.

In addition to looking at the data as a whole, we can also look at specific “subsets” of the data. To
do this, we can combine the browse command with logical if-statements. For example, if I only
wanted to look at people who were Sociology of Education majors, I would type the following:

(Note that because major is a string variable, I have to put the value in quotes. Also note the double
equal sign, which we always use for logical statements.)

The above command will bring up a window that looks like this:

Note that only Sociology of Education majors are included.

6

Stata logic syntax:
 == “is equal to” != “is not equal to”

> “greater than” < “less than”
>= “greater than or equal to” <= “less than or equal to”

Step 3. Summarizing variables
In social science research, we normally care about and want to analyze particular variables. The
first step in analyzing a variable is to condense information about that variable across all
observations. There are two main ways to condense information about a variable, depending on the
type of variable.

For variables made up of numbers, such as height, we use summarize, or summ.

To summarize the variable height in Stata, I would type summarize height or summ height in
my .do file. I could also run the command in the command box. Stata will return output like this:

(Note that the command you typed is included above the output.)

The summarize command has given us the number of observations that have a value for height,
and the mean, standard deviation, minimum and maximum of those values.

ACTIVITY 2:
1. How many observations are included in your dataset?
2. How many variables are there?
3. How does Stata differentiate between different types of variables? (e.g.

categories, numbers, string variables)
a. Confirm your conclusion with a partner!

4. Choose a subset of the data that’s interesting to you and browse only those
observations by using browse and a logical if-statement.

summarize Numeric
variable

Number of observations
Mean
Standard deviation
Minimum
Maximum

7

For variables made up of categories, such as major, we use tabulate, or tab.

To tabulate the variable major in Stata, I would type tabulate major or tab major in my .do file
or command line. Stata would return output like this:

This tells us that 1 person majored in Math, 5 people majored in Sociology (but one person majored
in “Sociology!”. Note that Stata reads this as different), 2 people majored in Sociology of Education,
and so on.

We can also see that 11 people in total have values of the variable major. But we have 13
observations overall. The mismatch between the total frequency of values for the variable major
and the total number of observations indicates that some people are missing a value for major.
Stata will ignore any observations that are missing information on a variable.

We can also subset our data, or split it into different groups. Many commands can be used on
subsets of data. We subset using logical if-statements. For example, what if we only wanted to look
at summary information for temperatures in Fahrenheit? This requires using two variables: temp
and F_C. The variable temp measures the temperature value and F_C tells us the unit (either
Fahrenheit or Celsius). Remember from browsing the data that F_C is a numeric variable with
labels, in that the categories “F” and “C” are stored in Stata as numbers. We can see how this is
done by running the command codebook F_C , which gives us this output:

tabulate Categorical
variable

Frequency, percentage, and
cumulative percentage
(by category)

8

The codebook command gives us lots of information about a variable. We can see that Fahrenheit
is coded as “1” and Celsius is coded as “2.” We can also see that there is one observation that is
missing information on the variable F_C (remember that missing information is coded as “.”).

Now we’re ready to subset our data. To summarize temperatures in Fahrenheit, we would type
summ temp if F_C==1. Note the double equal sign in the if-statement. We get the following
output:

The average preferred temperature, in Fahrenheit, is 71.9 degrees.

What do I do if I get an error?
Stata, like your 5th grade English teacher, is very particular about spelling and grammar. If you get
an error when trying to run code, double check your spelling and commas!

ACTIVITY 3:
In your .do file...

1. Summarize the variable siblings.
2. Tab the variable regions.
3. Run the tabulate command with TWO variables listed after it. (e.g. tab major

year_school). What happens?
4. Summarize temperatures in Celsius. What is the average favorite temperature in

Celsius?
5. Look at cheese preferences for juniors.

9

Step 4. Manipulating your data
Oftentimes we need to create new variables that are based on our existing variables. For example,
this is helpful when a dataset has a complicated form of a variable, e.g. race, and we want to
simplify it. To do this, we use two commands: generate and replace.

For example, say we wanted to create a variable for whether someone is an only child. We can tell
who is an only child by looking at the variable siblings.

Only one person in my data is an only child. How many people are only children in your dataset?

To create a new variable called onlychild, we would first use the generate command. In this
command, we would specify that the variable should initially be equal to 0 (indicating NO, not an
only child). We would type gen onlychild=0 in our .do file. This will assign the value of “0” for
onlychild to every person in the dataset. To verify this, we can use tabulate.

generate
New variable name
Value for new variable

A new variable with
the specified name
and values

replace
Variable we want to
change.
New value.
If statement specifying a
subset.

The specified
subset of that
variable will take
on the new value.

10

Next, we will use the replace function to re-code individuals who are only children so that they have
a value of 1 for the onlychild variable (indicating YES, an only child). We would use the following
code: replace onlychild=1 if siblings==0

(Note: the single equals sign assigns values to variables. Remember, we only use the double equal
sign for logical if-statements.)

Finally, whenever we create a new variable, we need to make sure that our new variable reflects
any data that were missing in our original variable(s).
replace onlychild=. if siblings==.

In this example, we adjusted for missing data at the end of the variable construction process.
Another strategy is to begin with a variable made up entirely of missing data (generate new_var
= .) and then use replace to fill in non-missing values.

Now we have a new variable called onlychild. When we’re done creating a variable, it’s important to
check that we created the variable successfully. For example, we should tabulate both siblings and
onlychild to make sure the categories of “0 siblings” and “only child” match. In other words, we
want to make sure that the same number of people are in each category. Using tabulate, we can
see that one person is marked as an only child, which is the same as the person who has a 0 for
the siblings variable.

A note about missing data
For numeric variables (either with or without labels), missing data is coded as a period (.); for
string variables, missing data is coded as an empty string (“”). Sometimes, when you download
data, there will be missing information that is not coded in a form Stata understands as missing
(e.g., 99, “NA”, “NaN”). These values should be recoded into the appropriate form (either . or “”)
using replace.

Missing data for numeric variables is also understood by Stata as “positive infinity.” This means
that you must be careful when using logical operators to create new variables. For example, if
you used the code replace new_var = 1 if old_var > 2, any observation missing on
old_var would take on a value of 1 for new_var, because, in Stata’s brain, . > 2. You can
resolve this issue by specifically excluding missing data in your replace function: replace
new_var = 1 if old_var > 2 & old_var !=.

11

But we’re not quite done. It’s also important to label variables so their meaning is clear. First, we
have to label the overall variable using label variable. For example, we might label our variable
onlychild something like “Is an only child.”

In Stata: label variable onlychild “Is an only child”

We can see that our variable onlychild is now labelled in the variable window:

Next, if we are creating a numeric variable with labels (often called a categorical variable), we can
create a label for each of the different categories within the variable using label define. Remember
that categorical variables are understood by Stata as numbers whose values have different labels.
In this case, the onlychild variable has values of 0 and 1, which are numbers that each represent
one of the two categories. By using labels, we can clearly state what those categories are. For the
onlychild variable, we want to label a value of 0 “Not an only child” and a value of 1 “Only child.”

label variable The name of the variable.
A label/short description
for the variable.

The variable will now
have a
label/description.

12

To create a label called “onlychild_label” in Stata:
label define onlychild_label 0 “Not an only child” 1 “Only child”

This creates a category label called “onlychild_label” where the number 0 is associated with the
label “Not an only child” and the number 1 is associated with the label “Only child.” Once we create
the category label, we have to “apply” it to the variable using label values. Without applying the
label, the variable onlychild’s values will remain unlabeled and still appear as 0’s and 1’s.

To apply the “onlychild_label” to the variable onlychild, we would type:
label values onlychild onlychild_label
(Note that the variable we want to label comes first, followed by the name of the label we created
using label define)

And now, when we tabulate the variable, we see the value labels instead of the underlying
numbers:

If we want to see the underlying numbers after applying our value labels, we can tabulate the
variable and specify the option “nolabel”:

label define A name for the label.
The underlying numbers
that each label applies to.
Labels for each category of
the variable.

A named set of
category labels.

label values The name of the variable.
The name of the label you want
to apply to the variable.

Categories of the
variable will now be
labeled.

13

Step 5. Other helpful functions (OPTIONAL)
So far, we have walked you through some functions necessary for data cleaning. But Stata has
LOTS more functions. Below are two examples. Try them out on your own. As you learn new
functions, you will learn what each function does and the information it requires.

Example 1. strpos for string variables
String variables can be challenging. For example, look at the variable regions.

A note about options and help pages
Many Stata functions have options, or ways to edit the function’s output. Options are included after
a comma following the main function. You can see different options, as well as more information
about any function, using the help command. Type “help” and the name of any Stata function (e.g.
tabulate). What happens?

ACTIVITY 4:
Note: this is challenging! Work together.

1. Create a variable for type of cheese (soft or hard) using if statements and
generate/replace. Be sure to take missing data into account, if necessary.

a. Label the variable
b. “Tabulate” this variable. What does it look like?
c. Create value labels for the categories of the variable and apply them to

the variable. Now tabulate the variable. What does it look like now?
2. Look up the help page for the function summarize. You should see an option

called “detail.” What happens when you summarize the variable height
specifying the “detail” option?

14

Each category lists multiple regions. But what if we want to look only at people who have ever lived
in the Northeast? How would we subset those individuals? One way would be to use OR
statements to list every possible category of regions that includes “Northeast”:
browse if regions==“Northeast,Midwest,West” | regions==”Northeast,West”

But this would be very time-consuming, and much harder when we have more data. Another option
is to tell Stata to look within a string variable. We can use the function strpos to do this.

This function can be tricky, so here is an example. Say we want to create a binary (0/1) variable
called northeast that tells us whether someone has lived in the Northeast.

First we would use gen northeast=0 to create the variable.
Then we would use the following code:

 replace northeast=1 if strpos(regions,”Northeast”) > 0

Now if I type browse regions northeast I will bring up the data browser with the original
variable regions and also the new variable I’ve created, northeast. What do you notice?

strpos The name of the
variable to search.
The string to search for.

0 if string is not included.
> 0 if string is included.

15

Example 2. Graphing with histogram and scatter
A key part of data analysis is creating data visualizations, or graphs. Data visualizations can show
information about one variable or the relationship between two variables. Two common forms of
data visualization are histograms and scatter plots.

Histograms show the distribution of a numeric variable. We create them using the command
histogram.

Let’s say we wanted to show visually how tall people in our sample are. We could create a
histogram for the variable height. We can use the command
histogram height, density and Stata would output:

(Note that there is a comma before we type “density” because “density” is an option.)

Alternatively, we can use the “frequency” option instead. We type the command

histogram The name of the variable to plot.
Whether you want to show the
density or frequency.

A histogram

16

histogram height, frequency and Stata would output:

The difference between the two is what Stata puts on the y-axis. When we specify density, the y-
axis is a measure of “density” for each range of height values. Don’t worry right now what density
means (no one really knows). When we specify frequency, the y-axis is a count of how many people
fall into the range of height values. This is more intuitive and useful.

While histograms are useful for information about one variable, sometimes we want to show
information about two variables. Scatter plots show the distribution of two continuous variables. To
create one we can use the command scatter.

Let’s say we wanted to show the relationship between someone’s height and their ideal
temperature (in Fahrenheit). We would use the command
scatter temp height if F_C==1 and Stata would return the output:

scatter A variable for the y-axis
A variable for the x-axis

A scatter plot

17

Because we typed temp first, it is on the y-axis. What would happen if we typed scatter height
temp if F_C==1?

(Note: Why do we limit this scatter plot only to the subset of observations for which F_C==1?)

ACTIVITY 5:
1. Create and label a variable called midwest for whether a person has ever

lived in the Midwest using strpos and generate/replace.
i. Summarize the variable siblings for people who have ever

lived in the Midwest.
2. Create and label a variable for whether a person has lived in both the

Midwest and the West. Summarize the variable.
3. Create a histogram for favorite temperature in Fahrenheit.
4. Create a scatterplot showing the relationship between someone’s height

and the number of siblings they have.

